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Abstract-An analytical solution for the preheating due to the wail axial conduction in forced convection 
heating of fully developed laminar flows, is presented. The geometry of interest consists of a long circular 
tube heated for a finite or semi-infinite length. It is proved that in the preheating region the wall heat flux 
varies with exponential law in the streamwise direction, so that the temperature protile becomes fully 
developed. Moreover, an exact functional relation between the exponent of the wall heat flux distribution 
and a single parameter, which depends on the Pkclet number and the wall conductance, is derived. The 

practical significance of the analysis is finally discussed. Copyright 0 1996 Elsevier Science Ltd. 

INTRODUCTION 

Laminar forced convection heat transfer inside ducts 
is usually analysed with the thermal boundary con- 
dition imposed directly to the fluid boundary, i.e. at 
the inside wall of the duct. Significant reviews of the 
most relevant literature on the subject are available, 
like those of Shah and London [l] and Shah and 
Bhatti [2]. However, in practical applications the ther- 
mal boundary condition is specified at the outer sur- 
face of the duct, while temperature and heat flux dis- 
tributions at the wall-fluid interface, because of wall 
conduction effects, are a priori unknown. Since con- 
vection in the fluid and conduction in the wall are 
strictly connected, this problem is referred to as a 
conjugate problem. 

In the field of conjugate heat transfer the case of 
ducts with a heating section preceded by a portion of 
unheated pipe is relevant to a variety of engineering 
applications. In such a situation the axial conduction 
in the wall can carry substantial amounts of heat 
upstream in the unheated region. The heat which pen- 
etrates upstream by conduction is removed from the 
wall by the fluid and carried downstream by convec- 
tion, the two phenomena playing opposite roles. As a 
consequence, in this region a significant preheating of 
the wall and fluid occurs, anticipating the thermal 
development with respect to the section where the 
direct heating starts. If compared with the case of 
negligible wall heat conduction, the Nusselt number 
in the heating section is reduced in a significant 
way. 

When the axial heat diffusion in the fluid and the 
radial temperature gradient in the wall can be con- 
sidered negligible (i.e. high P&let numbers and thin 
walls), the problem shows some interesting features. 
The analysis of the literature will be limited to this 

case, even if other papers on preheating effects, par- 
ticularly for low P&let numbers and turbulent flows, 
are available. 

Hall et al. [3] were the first to point out that in the 
nondirectly heated section of the tube a situation of 
full thermal development is achieved. This region is 
then characterized by a heat flux density exchanged at 
the wall-to-fluid boundary varying with exponential 
law in the axial direction. 

For thin walls, while assuming high P&let number 
values, Cotton and Jackson [4] demonstrated that the 
conjugate effect due to wall conduction can be taken 
into account by means of a single dimensionless par- 
ameter, termed the conduction influence parameter, 
defined as 

I=$A(l+A). 

In the preheating region a condition of exponential 
heating was numerically identified. However, their 
theoretical proof is not exhaustive from a math- 
ematical stand point, because the uniqueness of the 
exponent was not proved. They demonstrated also 
that the exponential index 

/? = (RPe (2) 

characterizing the exponential trend in the preheating 
region, is determined solely by the value of I 

B = B(I) (3) 

and offered a numerical validation of this functional 
relation. 

With the aim of providing a method for the 
measurement of the mass flow rate, Roetzel [5] pro- 
posed an analytical solution for the preheating prob- 
lem. While assuming the existence of a fully developed 
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A auxiliary function, equation (18) T dimensionless temperature 
c P constant pressure specific heat ((T’- ~:“)l(Ml~,)) 

[J kg-’ K-‘1 7” temperature [K] 

.: 

inner diameter of the tube [m] u’ axial velocity [m s- ‘1 
auxiliary function, equation (15) U dimensionless axial velocity (u’/ IV) 

F auxiliary function, equation (A3) W average axial velocity [m ss’] 
F I I Confluent Hypergeometric Function, x’ axial coordinate [m] 

equation (A8) X* dimensionless axial position (x’/RPe). 

9 auxiliary function, equation (15) 
I Conduction Influence Parameter, Greek symbols 

equation (1) 
; 

auxiliary position, equation (21) 
k thermal conductivity [W mm ’ K ‘1 exponential index (SRPe) 
K wall-to-fluid thermal conductivity I- Gamma function 

ratio (k,/kJ s wall thickness [m] 
I preheating length [m] A dimensionless wall thickness (S/D) 
I* dimensionless preheating length 1 constant of separation, equations (16) 

(l’/RPe) and (17) 
NU Nusselt number (q”D/k,( Tw - Tb)) p auxiliary position, equation (20) 

pe Poiseuille function, equation (A5) 1’ kinematic viscosity [m’ s-‘1 
Pe P&let number (RePr) t exponent [m-‘1 
Pr Prandtl number (vpc,/k) density [kg m-‘1 

4” heat flux density [w m-‘1 : auxiliary function, equation (24). 

4 dimensionless heat flux (q”/q;1) 

qe Poiseuille function, equation (A6) Subscripts 
r’ radial coordinate [m] b bulk 
r dimensionless radial coordinate f fluid 

(r//R) i wall-fluid interface 
R inner radius of the tube [m] in inlet 
Re Reynolds number ( WDjv) W wall 
s auxiliary function, equation (A2) 0 origin of axial coordinate. 

situation, the asymptotic Nusselt number could be 
calculated analytically as a function of the measured 
exponent shown by the temperature distribution aris- 
ing at the wall-fluid interface. Although in this analy- 
sis neither the conduction influence parameter, nor 
the functional relation (3) were identified, the inter- 
polating function proposed for the calculation of the 
Nusselt number can be rearranged in terms of the 
parameter I. In this sense, the results of Cotton and 
Jackson [4] are confirmed, even if the existence of a 
fully developed thermal situation is assumed. 

The preheating region has been investigated also by 
Pagliarini and Piva [6], in the frame of a full numerical 
simulation of an experimental test section, where a 
laminar flow was heated for a short length. For this 
reason the coupling with the ambient and the radial 
temperature gradient in the wall were also considered 
in the numerical simulation. 

From these numerical results the following approxi- 
mate correlation for the functional relation (3) was 
obtained by Piva and Pagliarini [7]: 

p = 0.5321-’ 6’o (4) 

in the range 4.5. 1O-6 < I < 5 - 10m4 and 200 < 

p < 4000, with an overall uncertainty of the fit equal 
to 2. In ref. [7], the correlation (4) was also com- 
pared with experimental data gathered in a new test 
rig. Based on equation (4), two original and promising 
methods for the measurement of thermal conductivity 
of ducts and mass flow rate were proposed, the latter 
independently from Roetzel [5]. 

Analysis of the literature shows how both in the 
numerical and experimental analyses of the conjugate 
preheating problem, a fully developed situation is evi- 
dent [4, 6, 71, though its existence has never been 
completely demonstrated [3, 41 and in certain cases 
also assumed [5]. The available methods for the cal- 
culation of the exponential index from the conduction 
influence parameter are all based on interpolations 
of numerical or experimental results, while for the 
application of the promising experimental methods 
proposed in refs. [5, 71, an exact relation would be 
appreciated. 

In the present paper the exact analytical expressions 
of the functional relation /I = p(Z) and of the Nusselt 
number, Nu = Nu(Z), are presented. Furthermore, 
from the exact solution a more general proof of the 
existence of a full thermal development can be drawn. 
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Fig. 1. Schematic representation of the conjugate preheating problem. 

FORMULATION OF THE PROBLEM 

The problem considered is schematically shown in 
Fig. 1. A Newtonian fluid in fully developed laminar 
flow is heated from the wall of a long circular tube. 
Downstream from section x’ = 0, the outside of the 
wall is heated by a known distribution of heat flux 
density. Upstream the wall is thermally insulated. The 
axial heat conduction in the fluid is negligible, as is 
the viscous dissipation. At the inlet to the tube a 
uniform temperature distribution is considered both 
in the fluid and in the wall. The thermal properties of 
solid and fluid are assumed to be constant. Con- 
sideration is given to relatively thin walls so that tem- 
perature variations in the radial direction across the 
thickness of the wall can be neglected. 

The present analysis is limited to the region 
upstream of the heating section. 

The problem can be stated in mathematical form as 
follows (see the Nomenclature for the definition of the 
dimensionless quantities) : 

fluid region 

T(x*+ -03) =o (6) 

(7) 

solid region 

d2T 
212 dX*2 -4,(x*) = 0 

T,(x* + -co) = 0; 

continuity at the wall-fluid interface 

T,(x*) = T(x*,r = 1) 

(9) 

(10) 

qi(x*) = !T ( > ar r=,’ (11) 

continuity of temperature and heat flux at x* = 0 

T(x* = 0-,r) = T(x* = O+,r) (12) 

(g)__,, = (~)x*_.+,. (13) 
The conditions of continuity at the wall-fluid inter- 

face allow the substitution of boundary condition (11) 

co 
T(x*,r) = 

5 
A(I) exp(lx*)f(l, r) dL. (22) 

--m 

From the substitution of the general solution (22) 
with in the boundary condition (14), follows: 

t 

6 

D 

6 

(TJ,=, = 2~(~),=~~ (14) 

Equation (5) with its boundary conditions (6), (7) 
and (14) can be solved by separation of the variables. 
The solution is then written as 

W, x*) = S(r)&*). (15) 

Equation (5) is then reduced to the following two 
ordinary differential equations : 

$$= ag (16) 

(Z+ ;g= A(1 -r’)J (17) 

A general solution of equation (16) can be expressed 
in terms of the exponential function 

g(n, x*) = A(1) exp(lx*). (18) 

Equation (17) is the so-called Poiseuille equation [9] 
and its solution can be expressed in terms of confluent 
hypergeometric functions (see Appendix A for further 
details). The solution of equation (17) is given by that 
Poiseuille function bounded at the centreline of the 
duct, so that boundary condition (7) is always satisfied 

f(& r) = pe(r, PC> = exp(-pr2/2)1F1 [a, 1, fir21. 
(19) 

In equation (19) the following positions are used : 

p = (-A)“2 (20) 

1 a=_ l-1 
( > 2 2 (21) 

with p and u both real or complex depending on 1 < 0 
or 1 > 0. 

The functions@, r) do not form an orthogonal set, 
so the solution is sought by means of the Fourier 
integrals method [8]. Therefore, the solution will be 
of the form 



3514 S. PIVA 

af(n, r = 
44 & 

1) 1 exp(lx*) di 

= s tn [2Zl’A(i)f(l, r = l)] exp(lx*) di. (23) 
a 

The admissible values of the constant of separation 
1, then satisfy the following transcendental equation, 
derived from equation (23) : 

-2ZE.‘f(l,r = 1) = 0. (24) 

The search for the roots of this equation can be 
easily executed by means of a numerical procedure. 

Boundary condition (9) is satisfied for positive 
values of 3.. In this range equation (24) has got a 
unique root (see Appendix B for the proof). In the 
following, the only acceptable constant of separation 
I will be indicated as fi. Hence, the solution of the 
problem reduces to 

T(x*, v) = A exp(&x*)flb, Y). (25) 

From the solution according to equation (25) it 
may be easily shown that a thermally fully developed 
flow arises. 

The temperature distribution (25) is varying axially 
with exponential law, as is the wall-fluid heat flux 
density, given by 

VuLr = 1) 
4,(x*) = Aexp(bx*) ar (26) 

The integral energy balance equation, applied 
between - co and x*, gives the bulk temperature 

T 

b 
(x*) = 4A MA r = 1) exp(Px*) 

dr B 
(27) 

The Nusselt number in the preheating region, and 
particularly at the inlet of the heated section, is finally 
given by 

independent from the axial coordinate, x*. Equation 
(28) shows that the flow is thermally fully developed. 

For the evaluation of equation (25), the value of 
the constant A must be calculated from the coupled 
solution of the thermal problem in the upstream and 
downstream regions, thus depending on the particular 
thermal boundary condition specified downstream. 
However, knowledge of the constant A is not needed 
for the aim of the present paper and for this reason 
its calculation will be avoided. 

It can be observed that in the final temperature 
distribution, equation (25), only one constant, A, is 
involved ; for this reason, only one boundary con- 
dition at x* = 0 is enough to obtain its value. Then 
for the aim of the present paper, the boundary con- 
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Fig. 2. Exponential index, /I, as a function of the conduction 
influence parameter, I. 

ditions (12) and (13) can also be substituted by a 
condition of prescribed wall temperature, or of pre- 
scribed heat flux density at x* = 0. 

The present solution can be used for thermal bound- 
ary conditions of assigned heat flux density dis- 
tribution in the heated region, independently from the 
modality of heating. For thermal boundary condition 
of assigned temperature distribution this solution is 
not valid, because in this case at x* = 0 both the 
temperature and the axial heat flux density in the wall 
are prescribed. 

Finally, the influence of the wall axial conduction 
on the exponential index, 1, and on the Nusselt 
number, Nu, is accounted for by a single dimensionless 
parameter, the conduction influence parameter, Z, thus 
confirming the previous analyses [4, 6, 71. 

RESULTS AND DISCUSSIONS 

The problem proposed has been solved by means 
of a mathematical package on a personal computer. 
The preheating effects are discussed in terms of 
exponential index and Nusselt number distributions, 
and of preheating length. 

In the following discussion, reference will be con- 
stantly made to the experimental data taken by Piva 
and Pagliarini [7] for the same geometry analysed in 
the present paper. For reason of brevity the details 
of the experimental arrangement and procedure are 
omitted here. 

The root of equation (24), giving the exponential 
index, /?, as a function of the conduction influence 
parameter, Z, has been calculated numerically by 
means of the bisection method. In Fig. 2, the 
exponential index /I is shown as a function of I. The 
exponential index decreases monotonically as the con- 
duction influence parameter increases. The latter par- 
ameter takes into account both the dimensionless wall 
conductance, KA( 1 + A) for thin walls, and the P&let 
number, Pe, playing opposite roles in the process. If 
for fixed P&let numbers, the wall conductance 
increases, the exponential index decreases and the pre- 
heating penetrates more and more upstream. This is 
because the wall conduction tends to overcome the 
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Table 1. Analytical and interpolated values of exponential index and Nusselt number 

I /l an. /3 equation (29) /I equation (4) B PI Nu Nu t51 

1 x lo-’ 9750.98 9752.15 9906.30 9684.67 38.33 37.81 
5 x lo-’ 3648.79 3680.94 3711.42 3673.60 27.56 27.39 
1 x 1o-6 2421.02 2419.47 2431.71 2417.83 23.91 23.84 
5 x 10m6 910.317 913.227 911.045 912.691 17.20 17.29 
1 x 1o-5 596.401 600.263 596.914 598.879 14.94 15.07 
5 x 1o-5 222.212 226.568 223.635 223.775 10.84 11.00 
1 x 1om4 144.789 148.923 146.525 145.932 9.484 9.644 
5 x 1o-4 52.9318 56.1958 54.8959 53.4003 7.108 7.252 
1 x 1om3 34.0485 36.9366 35.9676 34.3426 6.373 6.505 

convection from the wall to the fluid. The opposite is 
valid if, for fixed wall conductance, the P&let number 
increases. 

In Fig. 2 the experimental values taken by Piva and 
Pagliarini [7] and the numerical results of Cotton and 
Jackson [4] and Pagliarini and Piva [6] are also com- 
pared with the present analytical values, showing a 
very good agreement. In the light of these results, it 
can be concluded that, at least for the considered 
values of the dimensionless parameters, the secondary 
effects like buoyancy, finite wall thickness or axial 
heat diffusion in the fluid, always present in the exper- 
iments, are negligible, thus confirming the validity of 
the simplifying assumptions for many practical appli- 
cations. 

The trend shown by the exponential index in the 
log-log plot of Fig. 2 is almost linear, reminding of a 
generalized hyperbola. This trend suggests the possi- 
bility of a simplified interpolation of /l as a power 
function of Z, confirming the analysis of Piva and 
Pagliarini [7]. In the range analysed, the best fit, with 
the same weight assigned to every point, is given by : 

j = 0.564ZZ” 605 (29) 

which is slightly different from equation (4) proposed 
in ref. [7], obtained from fitting a limited number of 
numerical results. 

In order to check the validity of the interpolation, 
a comparison between analytical and interpolated 
results is reported in Table 1. In the same table the 
results obtained rearranging the interpolations of 
Roetzel [5] and those obtained with correlation (4) 
given in ref. [7], are also reported. The interpolating 
function proposed in ref. [7] gives exponential indices 
always slightly higher than the analytical values. Both 
the present interpolation, equation (29), and that of 
Roetzel [5] give reasonable values, the first better for 
low Z, the latter ones for high I. It may be noted that 
the generalized hyperbolic interpolations give very 
good results only for small intervals of I; then for 
practical applications a proper interval of interp- 
olation has to be chosen. 

The values of the Nusselt number calculated ana- 
lytically and those obtained by rearranging the equa- 
tions given by Roetzel [S] in terms of the conduction 
influence parameter, are also reported in Table 1. The 
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Fig. 3. Nusselt number, Nu, as a function of the conduction 
influence parameter, I. 

interpolating function for the Nusselt number 
obtained from the analysis of Roetzel [5] gives very 
good results, with an uncertainty in the fit within 
1.5%. 

The Nusselt number values in the preheating region 
are shown in Fig. 3 as a function of the conduction 
influence parameter. The trend exhibited is mono- 
tonically decreasing and for I+ + co the Nu = 
4.364, corresponding to a uniform heat flux density 
distribution, is asymptotically reached. This value 
is attained with good approximation just for Z = 1 
(B g 0.125). In Fig. 3, the experimental values taken 
by Piva and Pagliarini [7] and the numerical results of 
Cotton and Jackson [4] and Pagliarini and Piva [6] 
are shown for comparison, confirming the good agree- 
ment between the experimental and predicted results. 
If compared with the present Nusselt number values, 
the experimental data of ref. [7] are practically coinci- 
dent over the whole range of Z considered (within 2% 
approximation). The good agreement shown by the 
comparison conth-rns that the most important features 
of the phenomenon occurring in the preheating region 
are considered, at least in the range of validity of the 
present analysis, as just observed for the exponential 
index. 

A parameter of interest for design applications is 
the extent of the upstream region over which the heat 
transferred to the fluid due to axial wall conduction is 
significant. This preheating length, Z’, is con- 
ventionally assumed to be the distance required to 
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Fig. 4. Preheating length, I*, as a function of the conduction 
influence parameter, Z, and for fixed values of the wall con- 

ductance, KA. 

reduce the wall-fluid heat flux to 1% of the value 
exchanged at the beginning of the heating, when the 
entering fluid temperature profile is uniform. The pre- 
heating length, in dimensionless form, then becomes 

It is evident that, because of the functional relation 
/l = j(I), the dimensionless preheating length is a 
function of the conduction influence parameter only, 
as shown in Fig. 4. The extent of the region affected 
in a significant way by the heat flux redistribution 
increases as the parameter I increases. 

For fixed characteristics of the wall, i.e. for fixed A 
and K, the preheating length decreases for increasing 
P&let numbers. Then a more pronounced extent of 
the region affected by wall axial conduction is 
expected for low P&let numbers, as shown in Fig. 4, 
in terms of number radii l’/R, for fixed values of the 
dimensionless wall conductance KA. 

CONCLUDING REMARKS 

The preheating region due to wall axial conduction 
in circular ducts is characterized by some features of 
particular interest when assuming negligible axial heat 
diffusion in the fluid and negligible radial temperature 
gradients in the wall : 

(1) The temperature profiles are fully developed, 
yielding a constant Nusselt number. Temperature and 
wall-fluid heat flux density increase according to an 
exponential law in the streamwise direction. 

(2) Exponential index and Nusselt number are 
characterized by a single dimensionless parameter, the 
conduction influencer parameter, including both the 
wall conductance and the P&let number. 

(3) The preheating problem can be solved ana- 
lytically. The solution is mathematically simple and 
easy to handle with small sized computers. This gives 
an easy way to calculate the Nusselt number at the 
thermal inlet of a duct in many practical situations, as 
a function of the conduction influence parameter only. 

(4) Experimental verification of the analytical 
results is easily carried out ; the close agreement shown 
between the analytical results and experimental data 
suggests the utilization of the configuration for the 
estimation of unknown parameters, like the mass flow 
rate flowing inside the tube or the thermal con- 
ductivity of the wall. Recent experiments [5, 71 have 
shown the feasibility of the proposal. 
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APPENDIX A 

The Poiseuille equation 

($+;$-,(1 -r’)f = 0 

is a special case of the Kummer’s equation [lo]. 
When in equation (Al) we let 

(Al) 
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s =(-1)“*r2 = ZJr2 (A2) APPENDIX B 

F(s) = exd-s/W@ 4, (A3) In this Appendix it is proved that 

the Kummer’s equation af(n, r = 1) 

sF”+(l -s)F’-aF= 0 (A4) 
W) = ar -2Zl’f(& r = 1) = 0 

can be easily obtained. has only one unique root for positive values of 1. 
The Poiseuille equation is a homogeneous and linear Equation (28) can be rewritten as 

second-order equation, with regular singularity at r = 0 and 
regular coefficients for all r # 0. Two independent solutions @(L,r = 1) 
satisfy the Poiseuille equation & 

pe(r,p) = exp(-~r2/2)rFI]x, l,~r*l (A3 
and 

qe(r,p) = - 
[ 
2r(O)+$$ exp(-pr*/2),F,[cc,l,$] 1 

(‘46) 
In the present application the solution qe(r, p) is not used 

because it is unbounded for r = 0. 
The derivative of the Poiseuille function pe(r, PC) is given 

by 

ape(r, d ~=~rexp(-~rZ/2)(2,F;[a,1,~r21-IFI[a,1,~r21) ar 

(A7) 

For the execution of the calculations, both the confluent 
hypergeometric function and its derivative are needed. The 
confluent hypergeometric function is defined as follows [lo] : 

(‘48) 

with a, b and z real or complex numbers. 
The derivative of the confluent hypergeometric function is 

[101 

,F;[a,b,z] =$(,F,[a,b,r]) =;,F,[a+l,b+l,r]. 

G49) 
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(24) 

(AtO) 

By introducing equation (AlO) in equation (24) one 
obtains 

(Al 1) 

For I = 0, boundary condition (7) is not satisfied. 
There is no root of equation 

f(A, r = 1) = 0 (A12) 

for positive values of 1, as shown by Papoutsakis [ 1 I]. 
Therefore, the acceptable roots can be derived only from 

the term in square brackets. The zeros of this term are given 
by 

4ZNu(1)1* + 8ZNu(I)I- Nu(l) = 0. (A13) 

This equation is not suited for the search of the roots. 
Nevertheless, it can be useful to determine their sign. The 
roots of equation (A 13) are : 

J.= -W)(l+~l+&z). (A14) 

Zis positive, as is Nu(l) for Iz > -25.6796 [12]. Therefore, 
equation (A13) gives two roots, the first one positive and the 
second one negative. Then it is proven that only one root of 
equation (24) is positive and so acceptable. 


